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Motivation

e Communication network

e Propagation of genetic information

e Generalization of Markov chain to trees

e Statistical physics on a Cayley tree / Bethe lattice

e Optimization problems and error correcting codes: locally tree-like net-
works

e Spin glass phase



Communication channel

*Yy
Message from alphabet, e.g. z,y € {1,...,q}

T (ylx)
Broadcast x — y: probability 7(y|z).

Example “Ferromagnetic Potts channel”:

() = l—c¢ify==x
mylr) = —=7 <1—¢ otherwise
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£ € [O,q%ql]; Larger ¢ — Higher temperature.



Communication channel

*Yy
Message from alphabet, e.g. z,y € {1,...,q} .
Broadcast x — y: probability 7(y|z).
Example “Ferromagnetic Potts channel”:
l—c¢ify==x .
i) = { < 1 ¢ otherwise a7 P (Fry)

Noise level in the channel: T = 1/3 (related to € by e™° = (q—l)g(l—s))
£ € [O,q%ql]; Larger ¢ — Higher temperature.

('Antiferromagnetic’ channel: ¢ € [q%l, 1]. e =1 — proper coloring)



Information on the boundary about the root

Broadcast: generates a boundary configuration B.

Reconstruction: Does B contain some information on the letter sent
from the root, in the large £ limit?

Potts channel broadcasted from zg = 1:

W — ZB Pbroadcast(B|x0 — 1)P(33 — 1‘B) — %
Reconstruction possible iff lim,_, .. ¢, > 0.
Phase transition (Mossel):

Rec. possible for € < ¢, (i.e. T < T,), impossible for ¢ > ¢,



Reconstruction versus “census reconstruction’”

e Single variable on the boundary: correlation with root decays as e~

when ¢ — 00, as soon as [ < o0.

e Census reconstruction: information contained in the number of boundary
sites with £ = 17

e Reconstruction: information contained in the full boundary pattern?



A simple upper bound: ferromagnetic transition

Fully polarized boundary, = 1 on all sites.

Reconstruction. Shell n: probability n(™ (z) = (1=ap)0z,142(1=021).

Mapping: a,,—1 = F(a,)
Boundary condition a, = 0.
qg—1

Fixed point a = e

Attractive iff e > ep = qil kgl

If T > T'r no correlation of center with B — reconstruction impossible



Kesten-Stigum lower bound (1966)

Shell n: k™ variables. Assume z,, k™ are in state x = 1.

n+1
Tnil k — g w; + E 2
i=1 j=1

(1 probability 1 —¢
| 0 probability ¢
g

(1 probability 1
0 probability 1 —

€
q—1



Kesten-Stigum lower bound (1966)
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Kesten-Stigum lower bound (1966)

Shell n: k™ variables. Assume z,, k™ are in state x = 1.

zy kT (1—zy) KT
Tpii kol — Z u; + Z 2
i=1 =1
. <( 1 probability 1 —¢ Large n: P(x,) ~ Gaussian
“ | 0 probability e 1 N

( q

. 1 probability qil E(xn) ~ pian C ‘1 — &€,
Zj = .

0 probability 1 — ==
VP y q—1 VE(@,2) = [E(zn)]? ~ O/ f—n/2



Kesten-Stigum lower bound (1966)

Shell n: k™ variables. Assume z,, k™ are in state x = 1.

n k"1 (1—zp) k™11
D VLD S
j=1
. <( 1 probability 1 —¢ Large n: P(x,) ~ Gaussian
“ | 0 probability e N

1 probability — E(zn) ~ + C ‘1 — &€, -+
Zj = 9 L. .

\ q—1 VE(@,2) — [E(z,)]?2 ~ O —"/2
— Census reconstruction possible if € < egg = qql\/\_/El

Th (Mossel Peres): Threshold for census reconstruction is e g



Some known results on the threshold 7,

Reconstruction

Census reconstr.

R
KS F

Trs given by: k| X\o(m)|° =1, Tr given by: k[ Xo(n)| =1
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Some known results on the threshold 7,

Reconstruction

Census reconstr.

R
KS F

?
Trs given by: k| X\o(m)|° =1, Tr given by: k[ Xo(n)| =1
ITrs <1, <1TF
For ¢ = 2: T,, = Tks (Bleher et al 95)

For ¢ large enough: T, > Txs (Mossel Peres 02)



New results (any tree, any channel)

e Reconstruction threshold T;. coincides with the dynamical (replica sym-
metry breaking) spin glass transition for an associated statistical physics
problem

e Numerical procedure — locate T’ with good precision

e Variational principle — new rigorous bounds on T, (proven for antiferro-
magnetic -or in general 'frustrated’- channels)



New results: examples

Ferromagnetic Potts
Numerically: T, = Tgg for ¢ = 3,4 and k € [2, 30]

T, >Tig forq>5, k> 2



New results: examples
Ferromagnetic Potts
Numerically: T, = Tgg for ¢ = 3,4 and k € [2, 30]
T, >Tig forq>5, k> 2
Antiferromagnetic Potts (coloring)

Numerically: Reconstruction in the noiseless limit (proper coloring) is
possible only if & > k.(q), with k.(3) =5, k.(4) =8, k.(5) =13,...



New results: examples
Ferromagnetic Potts
Numerically: T, = Tgg for ¢ = 3,4 and k € [2, 30]
T, >Tig forq>5, k> 2
Antiferromagnetic Potts (coloring)

Numerically: Reconstruction in the noiseless limit (proper coloring) is
possible only if & > k.(q), with k.(3) =5, k.(4) =8, k.(5) =13,...

T, =Tks for g =3 and k € [5,20]
T, > Tks for q >4, k > k.(q).

Rigorous: k.(4) < 8, k.(5) < 13. Discontinuous transition (T, > Tkg)
for g =4, k € [9,15], for ¢ = 5, k € [13,20], for ¢ = 6, k = 20.
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Reconstruction from a given boundary: recursion

Given a boundary:

1) = o T (S0 mwily) mw))— § ¢

() = Do I (S rwlmts)) N/ .

Mapping n = F(n1, ..., M%)



Reconstruction from a given boundary: recursion

Given a boundary:

() = s5 1limy ( wi—1 T(YilY) m(yi))

({ni}) = S T (3, wwily) mwe)

Mapping 7 = F(n1,...,m%)

Boundary B fixed by broadcast: 7;(y;) =9, ,5 when ¢ is a leaf.

Y

lterate from boundary to the center.
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Statistics on the boundaries

For a given boundary B, on each site ¢ of the tree, probability n?”,
obtained by iteration from boundary to center.

NB: Link to Potts partition function Z(y, B) = > ¢, 1 [ ijyem (¥, y;):
Broadcast:  Py5adcast(Bly) = Z(y, B)

Z(y,B)
y/ Z(y,aB)

Reconstruction:  77(y) = 5=



Statistics on the boundaries

For a given boundary B, on each site ¢ of the tree, probability n?”,
obtained by iteration from boundary to center.

NB: Link to Potts partition function Z(y, B) = > ¢, 1 [ ijyem (¥, y;):
Broadcast:  Py5adcast(Bly) = Z(y, B)

Z(y,B)
y/ Z(y,aB)

Reconstruction:  77(y) = 5=

When B is generated randomly from broadcast (starting from a root
fixed to xg) — probability distribution ), (77) of n on the root.

Quo(1) = X Z(w0, B) [L, 6 (n(x) — 2550 )

12



Functional recursion

13



The spin glass fixed point

Symmetry property: QY (1) = ¢ n(z) Q™ (n) and Q™ (n°) = Q™ (n)
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The spin glass fixed point

Symmetry property: QY (1) = ¢ n(z) Q™ (n) and Q™ (n°) = Q™ (n)

Recursion for ():

n k 2 n
QUi =g [ 2({n:}) 6[n—F(n,. .., m)] TTiey QU (m:) d[ni]

Fixed point:

Q*(n) ="' [ z({m:}) o[n—F(n,....m)] TLi=, Q*(m:) d[ni]



The spin glass fixed point

Symmetry property: QY (1) = ¢ n(z) Q™ (n) and Q™ (n°) = Q™ (n)

Recursion for ():

Q) =g [ 2({n}) 6[n—F(n,...,m)] TTeey Q™ (m:) d[ni]

Fixed point:

Q*(n) ="' [ z({m:}) o[n—F(n,....m)] TLi=, Q*(m:) d[ni]

Spin glass phase (“1-RSB"): exists iff there is a non-trivial symmetric fixed
point.

Th: Reconstruction is possible iff there is a spin glass solution @*
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Numerical approach

To obtain T).: Solve the fixed point equation

Q () =¢"* [ z({n}) §[n—Flm,...,m)] TTr_, Q*(m:) dlni

by a 'population dynamics’ (~ Monte Carlo) method.

Results

15



Variational principle

“Complexity” of a distribution @:
2(Q) = %I/We(mma) dmQ(m) dnaQ (1)
— [ W, mesr) TIET dmQ(m:)
where /We and /V[Z, are known...
Theorem: A fixed point @* IS a stationary point of Z(@)

Conjecture: If there exists a symmetric distribution @ such that Z(@) >
0, then the reconstruction problem is solvable.

Theorem: In the antiferromagnetic channel, if there exists a symmetric
distribution ) such that (@) > 0, then the reconstruction problem is
solvable.

16



Practical use of the variational principle

Compute X within some restricted subspace. Define e.g. CA)M which
attributes equal weight 1/¢ to the g points n = &) =z € {1,...,¢}:

T _ 1 — I3 it Yy =<, — ?
’Y( )(y) — { M/(q _ 1) otherwise. and X(p) = Z(QHJ).




Practical use of the variational principle

Compute X within some restricted subspace. Define e.g. CA)M which
attributes equal weight 1/¢ to the g points n = &) =z € {1,...,¢}:

T _ 1 — I3 it Yy =<, — ?
’Y( )(y) — { M/(q _ 1) otherwise. and X(p) = Z(QHJ).

SG




Practical use of the variational principle

Compute X within some restricted subspace. Define e.g. CAQM which
attributes equal weight 1/¢ to the g points n = &) =z € {1,...,¢}:

. ) 1=pn if y ==, oA
g = { LI T and S0 = D(Q)

SG

Example: ferromagnetic Potts, £ =2, ¢ =7

17



Ferromagnetic Potts, £k = 2, ¢ = 7: plot of —X vs pu:
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k=2, q=7. ¢=0.250, 0.253, 0.256.
First order transition: exg found by %(,u =(¢q—1)/q) =0

exs = 0.2510513..; eyar = .25369...; ¢, >~ .25432
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Results for the ferromagnetic Potts channel

er/eks as a function of ¢, for k = 2

1.03
1.03 [
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.02
iofr
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(.99

Squares: ¢,.(k,q). Crosses: variational lower bound.
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Spin glass theory on a tree 1

Broadcast: generates an equilibrium configuration of the Potts model
with free boundary conditions.

Reconstruction: given the boundary B obtained from the broadcast, the
conditional probability of the variable on the root, P(x|B), is also given by
Boltzmann's measure for the Potts model. But B creates some frustration



Spin glass theory on a tree 1

Broadcast: generates an equilibrium configuration of the Potts model
with free boundary conditions.

Reconstruction: given the boundary B obtained from the broadcast, the
conditional probability of the variable on the root, P(x|B), is also given by
Boltzmann's measure for the Potts model. But B creates some frustration

Spin glass on a tree: frustration only through boundary conditions.

Simple Ising spin glass model (Chayes, Chayes, Sethna, Thouless 1986):
fix each spin on the boundary to 1 with probability 1/2. But no RSB, no
real spin glass phase.

20



Spin glass theory on a tree 2

Other boundary condition: Hze{ leaves) ni(x;), but with correlated 7;:
1 -
P(Ami}) =z Ze(mi)) [ @9,
icleaves

where @(0)(n) is the uniform distribution on the ¢ ‘corners’ of the simplex
nx) =0, re{l,...,q}



Spin glass theory on a tree 2

Other boundary condition: Hze{ leaves) ni(x;), but with correlated 7;:

P({m:}) = %ZL({W}) H QW (ny) |

icleaves

where @(0)(n) is the uniform distribution on the ¢ ‘corners’ of the simplex
nx) =0, re{l,...,q}

— functional recursion: identical to the one found in reconstruction

f va) = @* this model is statistically invariant by translation (provided

rooted tree — regular Cayley tree): The properties of a spin don't depend
on its shell.

21



Spin glass theory: Bethe lattice

Traditionally, “Bethe lattice” = interior of a Cayley tree

Frustrated systems: frustration from the boundary — bad definition.



Spin glass theory: Bethe lattice

Traditionally, “Bethe lattice” = interior of a Cayley tree

Frustrated systems: frustration from the boundary — bad definition.

Better definition (M+Parisi 2001): use a random regular graph with fixed
degree k£ 4+ 1 on each vertex.

Local structure (from a generic point, to any finite depth) = tree.
Frustration from long loops (size of O(log N)).

This work: — Typical boundary condition from outside the tree = the
one obtained by broadcast !

22



Cavity method

Analysis of Potts model on a random regular graph: cavity method —
iterative functional equations.

ni—j(x;) = marginal distribution of z; when the edge ¢ — j has been
cut = function of the distributions 7;_,;(x;) where [ are the neighbors of ¢
different from j.
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iterative functional equations.
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cut = function of the distributions 7;_,;(x;) where [ are the neighbors of ¢
different from j.

'Liquid’ or 'paramagnetic’ solution, uniform: n;_;(x;) = n(x;)

Spin glass: many modulated solutions: n{* .(z;). Functional Q*(n)=

probability that 7;",; =7, when « is chosen randomly with its Boltzmann
weight. e?V* is the number of modulated solutions (BP fixed points)



Cavity method

Analysis of Potts model on a random regular graph: cavity method —
iterative functional equations.

ni—j(x;) = marginal distribution of z; when the edge ¢ — j has been
cut = function of the distributions 7;_,;(x;) where [ are the neighbors of ¢
different from j.

'Liquid’ or 'paramagnetic’ solution, uniform: n;_;(x;) = n(x;)

Spin glass: many modulated solutions: n{* .(z;). Functional Q*(n)=

probability that 7;",; =7, when « is chosen randomly with its Boltzmann
weight. e?V* is the number of modulated solutions (BP fixed points)

(NB: spin glass phase may be hidden by a ferromagnetic state, if it exists)

23



Comments

A very interesting problem!
Deep connexions to spin glasses

Using spin glass methods: — new exact results (for frustrated case) and
conjectures

Several open questions: prove variational conjecture also in unfrustrated
cases — best known bounds... Meaning of the complexity directly in the
broadcast/reconstruction problem?



Comments

A very interesting problem!
Deep connexions to spin glasses

Using spin glass methods: — new exact results (for frustrated case) and
conjectures

Several open questions: prove variational conjecture also in unfrustrated
cases — best known bounds... Meaning of the complexity directly in the
broadcast/reconstruction problem?

Ref: “Reconstruction on trees and spin glass transition”, Marc Mézard
and Andrea Montanari, J. Stat. Phys. 124 (2006) 1317-1350
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Appendix A: Proof (sketch)

Proposition: The reconstruction problem is solvable iff there is a non-
trivial fixed point Q*(n)

If reconstruction solvable: Sequence of @(”) converges weakly to @*(n)
which is non-trivial.

If @* exists, non-trivial.  Construct the ¢ probabilities Q(n) =
q n(x) @*(77) Use them to infer some information on the root. On a
leaf ¢, broadcast has generated symbol z;. Generate 7); from Q; . Given
the »'s in generation n: generate the new 7)'s in generation n — 1 from the
mapping 7 = F(n1,...,7m%), down to the root. For each site j, conditional
to the broadcast having produced X; = z;, the n; provided by the above
procedure is distributed according to Q;j (Thanks to James Martin)

25



Appendix B: Variational principle 1

“Complexity” of a distribution CAQ:

AN

X(Q) =

=
]

k+1fW (71, 712) de(m)dan(m)

f Wv(nla coee 777k—|—1> Hi:l anQ(nZ)

B |:Zx1,az2 771(331)772(962)7T($1a$2)} log |:Za:1,w2 n(z1)n(ze)m(21,72)

2wy ,my M@1)N(22)7(21,22) 2wy ,zq M@1)N(22)7(21,22)

2o 11 220, mi(wi)m(w,2) o 2 11 200, mi(m)m(,2)
{Z s, SM(x)w(, 33@):| [Z [ 220, ()7 (, wz)}

n(z)=1/q

|
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Variational principle 2

Proposition: A fixed point @* is a stationary point of »(Q).

(Precisely: given any symmetric distribution @ define

Y*(t) = 2[(1 — t)Q* + tQ]. Then - =0

Proposition In the antiferromagnetic Potts channel, if there exists a
symmetric distribution ) such that (@) < 0, then the reconstruction
problem is solvable.

Conjecture In any channel, if there exists a symmetric distribution CAQ such
that 3(Q) < 0, then the reconstruction problem is solvable.

27



Er

EKS

~N =~ W N

15

0.2348(1)
0.33881(5)
0.4008(1)
0.4986(1)
0.5955(1)

0.2343146
0.33381198
0.4
0.4976284
0.5934409

N J| Ot Ot Ot Ot O

0.25432(5)
0.43325(5)

0.2510513
0.4285714

—_
-

0.2716(2)

0.2636039

—_
@)

NN = DO

0.2881(1)

0.2733670

Table 1: Threshold for the ferromagnetic Potts channel
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q | k Er EKS Evar Ealg EMP I,

5 | 2 | 0.2348(1) | 0.2343146 | 0.23491 | — — — | 0.30264 | 0.052(5)
5 | 3 [0.33881(5) | 0.3381198 | 0.33887 | 0.19047 | 0.41712 | 0.06(2)
b | 4 0.4008(1) 0.4 0.40081 | 0.29046 0.48 0.06(1)
5 | 7 | 0.4986(1) | 0.4976284 | 0.49847 | 0.41114 | 0.57143 | 0.07(1)
5 | 15| 0.5955(1) | 0.5934409 | 0.59422 | 0.53965 | 0.65238 | 0.14(1)
7 | 2 10.25432(5) | 0.2510513 | 0.25369 | — — — | 0.34577 | 0.14(1)
7 | 4 10.43325(5) | 0.4285714 | 0.43250 | 0.30769 | 0.53909 | 0.195(5)
10| 2 | 0.2716(2) | 0.2636039 | 0.26977 | — — — | 0.38325 | 0.23(2)
15| 2 | 0.2881(1) | 0.2733670 | 0.28472 | — — — | 0.41652 | 0.37(3)

Table 2: Thresholds (numerical results and bounds) for the ferro-
magnetic Potts channel. The reconstruction threshold ¢, satisfies
the rigorous bounds &, > eks, € > €alg, and & < gyp.
conjectured variational principle would imply €. > £y.;.

The
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q| k Er EKS Evar Ealg EMP I,

41 8 [ 0.99953(4) —— —— —— 10.91552 ] 1.56 Q
419 0.9908(4) 1 0.99298 —— 0.90717 | 1.31 0
4110| 0.9820(8) | 0.9871708 | 0.98304 —— 0.9 1.2(2 0
4 11| 0.9725(3) |0.9761335 | 0.97363 | 0.99736 | 0.89376 | 1.07 O
4112 | 0.9643(3) | 0.9665063 | 0.96498 | 0.98946 | 0.88826 | 0.26 z
4|15 | 0.9431(3) | 0.9436492 | 0.94338 | 0.96903 | 0.875 0.5(1) 0
4|18 | 0.9267(2) | 0.9267766 | 0.92686 | 0.95264 | 0.86502 | 0.3(1 0
5| 13| 0.99741(5) —— 0.99982 —— 0.92308 | 1.76(4) | C
5114 | 0.9932(1) —— 0.99555 | —— ]0.91916 | 1.7(1) | ©
5| 15 ().9888(1) —— 0.99092 —— 0.91561 | 1.48(5 O
5120 | 0.9685(3) | 0.9788854 | 0.96991 | 0.98581 | 0.90177 | 1.1(5 O
6| 17 | 0.999924(5) —— —— —— 0.93482 | 2.20 0.
6|20 | 0.9932(3) —— 0.99546 | —— |0.92792 | 1.87(6) | 0.

Table 3: Antiferromagnetic, rigorous bounds: ¢, < exs (KS),
er < €alg (Mossel), ey < evar (M+M), €, > eyp (Mossel Peres).




